Современные процессы рафинирования стали
  3.2 Организация выпуска металла из кислородных конвертеров

Для отделения шлака от металла при сливе из кислородного конвертера металлургические предприятия Японии используют задержку шлака в промежуточной емкости (рисунок 3.4).

Схема отделения шлака от металла с использованием промежуточной емкости

Рисунок 3.4 – Схема отделения шлака от металла с использованием промежуточной емкости: а – разрез сталеразливочного ковша и промежуточной емкости в момент окончания выпуска; б – начало выпуска; в – окончание выпуска; 1 – шлак; 2 – плавающий шар – отсекатель шлака; 3 – металл

Футерованную изнутри и снаружи промежуточную емкость, имеющую отверстие в днище, устанавливают перед выпуском плавки на сталеразливоч-ном ковше таким образом, что в начале выпуска металл из конвертера попадает непосредственно в сталеразливочный ковш (рисунок 3.4б). В заключительной части выпуска, когда вместе с металлом выходит шлак, струя падает в промежуточную емкость (рисунок 3.4в). Когда из конвертера начинает вытекать один шлак, конвертер возвращают в вертикальное положение, а в промежуточную емкость забрасывают шар, плотность которого такова, что он плавает на границе раздела шлака с металлом. Промежуточную емкость поднимают краном. При этом металл стекает в сталеразливочный ковш, а плавающий шар перекрывает отверстие в днище промежуточной емкости. При этом в сталеразливочный ковш шлак почти не попадает.

На отечественных заводах получили распространение способы отделения шлака от металла с помощью плавающих керамических пробок (рисунок 3.5).

Схема отделения шлака от металла при выпуске из конвертера

Рисунок 3.5 – Схема отделения шлака от металла при выпуске из конвертера: а, б – варианты технологии; 1 – плавающая керамическая пробка; 2 – лоток для ввода пробки в конвертер; 3 – граница шлак-металл

Схема отсечного устройства Новолипецкого металлургического комбинатаНа рисунке 3.6 показана конструкция отсечного устройства, используемого Новолипецким металлургическим комбинатом. Оно представляет собой литой стальной шар диаметром 160 – 190 мм, к которому приварена стальная арматура диаметром 16 мм. Поверхность шара покрыта огнеупорной оболочкой, состоящей из 60 – 65% магнезитового порошка фракции 0 – 3 мм, 25 – 30% магнезитового порошка фракции 0 – 1 мм, 8 – 10 % шлака производства феррохрома фракции 0 – 1 мм и 35 – 36% (сверх 100%) жидкого стекла.

Рисунок 3.6 – Схема отсечного устройства Новолипецкого металлургического комбината: 1 – стальное литье; 2 – хвостовик; 3 – арматура; 4 – огнеупорная оболочка

Шар-стопор вводят в полость конвертера с помощью манипуляторов, смонтированных на тележке для ремонта сталевыпускного отверстия, за 0,5 – 1,0 минуту до окончания выпуска металла и забрасывают в район сталевыпускного отверстия. Кажущаяся плотность этого шара меньше, чем у расплавленного металла, и больше, чем у шлака. Поэтому шар плавает на границе раздела шлак-металл и после слива всего металла перекрывает отверстие.

Испытания показали, что эффективная отсечка шлака достигается на 90% плавок. На плавках с отсечкой шлака на 0,2 кг/т стали снижается угар алюминия, на 0,4 кг/т – угар марганца, восстановление фосфора составляет всего 0,001 – 0,005% (без отсечки – 0,005 – 0,015%).

В последние годы для отделения шлака от металла при сливе из конвертера отечественные предприятия начинают использовать пневматические пробки (рисунок 3.7), шиберные затворы и другие устройства, которые вместе с приводами устанавливают на внешней стороне корпуса конвертера.

Пневматическая пробка для отсечки шлака при выпуске из конвертера

Рисунок 3.7 – Пневматическая пробка для отсечки шлака при выпуске из конвертера

При этом момент появления шлака в потоке вытекающего из конвертера металла определяется при помощи электромагнитного индикатора. Основу этого устройства составляют два индуктора, которые размещают в футеровке сталевыпускного отверстия по обе стороны контролируемого потока. При прохождении тока заданной частоты в одном из индукторов в другом наводится ЭДС, величина которой зависит от магнитной проницаемости среды. Поэтому появление шлака в потоке металла приводит к изменению ЭДС, что фиксируется контролирующим прибором и является сигналом к отсечке шлака.

Другой способ определения наличия шлака в потоке металла основан на различной интенсивности излучения с их поверхности. В этом случае момент начала выхода шлака фиксируется при помощи термокамеры.

При использовании таких устройств количество печного шлака в ковше по окончанию выпуска не превышает 4 кг/т стали, в то время как при обычной работе оно составляет 5 – 15 кг/т.

Простым и надежным способом отделения шлака является перелив металла из ковша в ковш, главным недостатком которого являются значительные потери температуры металла. Так, например, при переливе из 100-т ковша температура металла может понижаться на 25 – 40оС в зависимости от нагрева футеровки приемного ковша. Кроме того, после перелива в первом ковше обычно остается несколько тонн металла.

  3.2 Организация выпуска металла из кислородных конвертеров
РЕКЛАМА НА САЙТЕ

КНИГИ ПО МЕТАЛЛУРГИИ