Новые материалы в металлургии
  15.2 Основные свойства полимеров. Полимерные материалы и пластмассы

Полимеры могут находиться в твердом и жидком состояниях (газообразное состояние для них не характерно), кристаллическом и аморфном фазовых состояниях, а также в стеклообразном, высокоэластическом и вязкотекучем деформационных физических состояниях.

Полимеры имеют высокую стойкость в таких средах, как щелочи и концентрированные кислоты. В отличие от металлов они не подвержены электрохимической коррозии. С увеличением молекулярной массы снижается растворимость полимеров в растворителях органического происхождения. Полимеры с пространственной структурой практически не подвержены действию органических растворителей.

Большинство полимеров является диэлектриками. Полимеры в основном относятся к немагнитным веществам. Из всех применяемых конструкционных материалов полимеры имеют наименьшую теплопроводность и наибольшие теплоемкость и тепловую усадку. Тепловая усадка полимеров примерно в 10 – 20 раз больше, чем металлов. Причиной потери герметичности уплотнительными узлами при низких температурах является стеклование резины и резкое различие коэффициентов расширения металла и резины в застеклованном состоянии.

Для полимеров характерен широкий диапазон механических характеристик, сильно зависящий от их структуры. Кроме структурных параметров большое влияние на механические свойства полимеров оказывают внешние факторы: температура, длительность и частота или скорость нагружения, давление, вид напряженного состояния, термообработка, характер окружающей среды и др.

Особенностями механических свойств полимеров являются их удовлетворительная прочность, но малая жесткость по сравнению с металлическими материалами.

Полимерные материалы подразделяются на твердые с модулем упругости Е = 1 – 10 ГПа (пластмассы, волокна, пленки) и мягкие высокоэластичные материалы с модулем упругости Е = 1 – 10 МПа (резины). Механизм и закономерности разрушения тех и других существенно различны.

Для полимеров характерны ярко выраженная анизотропия свойств, снижение прочности и развитие ползучести при длительном нагружении. Вместе с тем полимеры обладают высоким сопротивлением усталости. Для полимеров характерна более резко выраженная температурная зависимость механических свойств по сравнению с металлами.

Одной из основных характеристик полимеров является деформируемость. По деформируемости (или податливости) полимеров в широком температурном интервале чаще всего оценивают их основные технологические и эксплуатационные свойства.

Значение деформируемости определяют методом термомеханических кривых деформация - темnepaтypa (рисунок 15.2).

Термомеханическая кривая аморфного полимера с линеной структурой

Рисунок 15.2 – Термомеханическая кривая аморфного полимера с линеной структурой: Тс – температура стеклования; Тt – температура начала вязкого течения; I, II, III – участки стеклообразного, высокоэластичного и вязкотекучего состояний

Термомеханические кривые получают при нагреве нагруженного образца полимера с заданной скоростью. Действующая нагрузка должна быть постоянной по величине и малой по значению, чтобы механические воздействия на полимер не приводили к изменению его структуры.

Анализ кривой на рисунке 15.2 показывает, что полимер может находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем.

В стеклообразном состоянии при малых напряжениях наблюдается только упругая деформация с высоким модулем упругости (Е = 2,2 – 5 ГПа). Стеклообразное состояние является одной из форм твердого состояния высокомолекулярных веществ. Выше температуры стеклования к этой деформации добавляется высокоэластическая составляющая, которая значительно превосходит упругую и характеризуется модулем высокоэластичности Е = 0,1 – 1 МПа. Выше температуры текучести проявляется еще одна составляющая деформации, которая приводит к постепенному накоплению остаточной деформации образца полимера. Границы между этими физическими состояниями характеризуются значениями температур стеклования Тс и текучести Тt. Критические температуры Тс и Тt являются основными характеристиками полимеров.

Важность этих характеристик хорошо иллюстрируется следующими примерами. Во многих случаях волокна и полимеры должны иметь высокую прочность. Поэтому лежащие в их основе полимеры должны находиться в стеклообразном состоянии. Резиновой промышленности, наоборот, необходимы высокоэластичные полимеры, сохраняющие это состояние в широком температурном интервале. Процесс технологической переработки полимеров происходит, как правило, в области вязкотекучего состояния. Поэтому для переработки они должны быть нагреты выше соответствующей температуры Тt.

Низкомолекулярные вещества не могут находиться в высокоэластическом состоянии, для них характерны только стеклообразное и вязкотекучее состояния. Высокоэластическое состояние занимает тем больший температурный интервал Тс – Тt, чем больше молекулярная масса полимера.

Все полимеры в большей или меньшей степени подвержены процессу старения во времени. Старением полимеров называют самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении.

Старению способствуют свет, частая смена циклов нагрев – охлаждение, воздействие кислорода, озона и другие факторы. Старение ускоряется при многократных деформациях, менее существенное влияние на старение оказывает влага. При старении повышается твердость, хрупкость, теряется эластичность. При высоких температурах (200 – 250°С) происходит термическая деструкция – разложение органических полимеров, сопровождающееся испарением летучих веществ.

Для замедленного старения в полимерные материалы добавляют стабилизаторы. Обычно применяют стабилизаторы двух типов: термостабилизаторы (амины, фенолы) и светостабилизаторы (например, сажу).

Длительность эксплуатации стабилизированных полимеров значительно возрастает. Срок наступления хрупкости полиэтилена, стабилизированного сажей, составляет свыше 5 лет. Трубы из поливинилхлорида могут работать 10 – 25 лет.

Для определения механических свойств неметаллических материалов проводят статические испытания на растяжение, сжатие и изгиб; динамические испытания на удар; определение твердости, усталостной прочности, ползучести и др. С целью определения стойкости к старению проводят физико-механические испытания материалов после ускоренных климатических испытаний на фотостарение.

Кроме того, существуют методы определения массы, толщины, плотности материала, а также специальные виды испытаний:

  • для картона – на надлом, излом, продавливание, сжатие кольца, линейное сжатие;
  • гофрированного картона, гофропласта – на торцевое и плоскостное сжатие, расслаивание, продавливание и пробой;
  • резины – на стойкость при статической деформации сжатия;
  • древесностружечных плит – на прочность и модуль упругости при изгибе, удельное сопротивление выдергиванию гвоздей и шурупов.

Сравнительные характеристики важнейших полимеров представлены в таблице 15.1.

свойства некоторых полимеров

Полимеры (искусственные материалы) в соответствии с международным стандартом (ISO) обозначают условными символами, которые облегчают маркировку торговых изделий. Ниже в алфавитном порядке представлен ряд международных обозначений важнейших полимеров, применяемых в технике:

обозначения полимеров в соответствии с международным стандартом ISO

обозначения полимеров в соответствии с международным стандартом ISO

  15.2 Основные свойства полимеров. Полимерные материалы и пластмассы
РЕКЛАМА НА САЙТЕ

КНИГИ ПО МЕТАЛЛУРГИИ