Новые материалы в металлургии
  13.3 Волокнистые композиционные материалы

Помимо обеспечения прочности и монолитности конструкции матрица должна иметь необходимую пластичность и быть работоспособной в той температурной области, для которой предназначен КМ.

Для изготовления КМ, применяемых при температурах ниже 200°С, используют полимерные матрицы. К таким композитам относятся стеклопластики, армированные короткими стеклянными волокнами в матрице из полиэфирной смолы. Стеклопластики применяют для изготовления корпусов автомобилей, лодок, некоторых бытовых приборов. В качестве матриц также используют термореактивные полимеры, в которых поперечные связи между основными цепями формируют жесткую структуру с трехмерной сеткой. Такими полимерами являются эпоксидные смолы, которые благодаря поперечным связям имеют более высокую термостойкость.

Для работы при более высоких температурах применяют металлические матрицы. Обычно используют металлы с малой плотностью: алюминий, реже – магний, титан.

Металлические КМ обладают рядом преимуществ перед полимерными. Помимо более высокой рабочей температуры, они характеризуются лучшей изотропией и большей стабильностью свойств в процессе эксплуатации, более высокой эрозионной стойкостью.

Пластичность металлических матриц сообщает конструкции необходимую вязкость. Это способствует быстрому выравниванию локальных механических нагрузок. Высокая теплопроводность металлических КМ предохраняет от локальных перегревов, что особенно важно для таких изделий, как наконечники ракет и ведущие кромки крыльев.

Высокая электропроводность металлических КМ хорошо защищает их от электромагнитного излучения, молнии, снижает опасность статического электричества. Важным преимуществом металлических КМ является более высокая технологичность процесса изготовления, формовки, термообработки, формирования соединений и покрытий.

Для наиболее высоких рабочих температур в качестве матричного материала применяют керамику. Ее основной недостаток – отсутствие пластичности – в некоторой степени компенсируется армирующими волокнами, тормозящими распространение трещин в керамике.

Использование в качестве матричного материала аморфного углерода, а в качестве армирующего материала – волокон из кристаллического углерода (графита) позволило создать композит, выдерживающий нагрев до 2500°С. Такой углерод-углеродный композит перспективен для космонавтики и заатмосферной авиации. Толчком к интенсивному использованию углерод-углеродных композитов в США послужили работы по программе создания космических кораблей многоразового использования. Недостаток углеродной матрицы состоит в возможном окислении и абляции(Абляция (лат. ablation – отнятие) – унос вещества с поверхности твердого тела потоком горячего газа (путем эрозии, оплавления, сублимации)). Для предотвращения этих явлений композит покрывают тонким слоем карбида кремния.

Таким образом, наиболее важным критерием выбора матричного материала является рабочая температура эксплуатации композита.

Помимо высокой прочности и жесткости, основными требованиями, предъявляемыми к волокнам для КМ, является хорошее смачивание материала волокна расплавленной матрицей в процессе изготовления композита. Важными условиями являются слабое взаимодействие волокна с материалом матрицы и его высокая окислительная стойкость.

Для армирования металлических КМ обычно используют непрерывные волокна: углеродные (УВ), борные (В), оксида алюминия (Аl2О3), карбида кремния (SiC), карбида бора (В4С), нитрида бора (BN), диборида титана (TiB2), оксида кремния (SiO2). В качестве волокон применяют также металлическую тонкую проволоку, полученную методом волочения из стали, вольфрама, титана, молибдена и бериллия. Реже используют нитевидные специально выращенные кристаллы разных материалов.

Наибольшее распространение для армирования металлических КМ получили непрерывные или дискретные углеродные и борные волокна, свойства которых приведены в таблице 13.1.

свойства волокон для армирования металлических композиционных материалов

Волокна бора обычно получают осаждением бора из газовой фазы при диссоциации его галоидных соединений, например треххлористого бора ВС13. Бор осаждается на основу из тонкой (12 мкм) вольфрамовой нити, нагретой до 1100 – 1200оС. В процессе осаждения бор диффундирует в вольфрамовую основу, образуя бориды вольфрама в сердцевине волокна. Время пребывания волокна в реакционной камере составляет 1 – 2 мин. Общий диаметр борного волокна составляет 100 – 150 мкм.

Сырьем для получения высокопрочных и высокомодульных углеродных волокон являются такие полимеры с высоким содержанием углерода, как полиакрилонитрил (ПАН), и реже – пек и вискоза. ПАН-волокно выдавливают через малые отверстия и подвергают пиролизу в инертной атмосфере при температуре около 2000°С. Углеродные волокна выпускают в виде нитей, содержащих до 10000 элементарных волокон, диаметр которых составляет около 7 мкм. Модуль и прочность волокна не изменяется при нагреве его до 600°С.

Для многих видов волокон разработаны технологические процессы нанесения покрытий для обеспечения лучшей смачиваемости, окалиностойкости и оптимального взаимодействия волокна с матрицей. Борные волокна защищают от реагирования с расплавами титана и алюминия созданием на поверхности диффузионного барьера из карбидов кремния или бора. Волокна бора, защищенные карбидом кремния, называют borsic (борсик). Из-за высокой окислительной способности углеродных волокон на их поверхность наносят специальные покрытия, а процессы переработки осуществляют в защитной атмосфере. Углеродные волокна имеют отрицательное значение температурного коэффициента линейного расширения, благодаря чему появляется возможность при соответствующей укладке волокон получать температурный коэффициент линейного расширения близкий к нулю.

Волокна карбида кремния получают методом химического осаждения из паровой фазы на подложку из борного или углеродного волокна. Эти волокна имеют хорошую теплостойкость, стойкость к окислению и мало реагируют с металлом.

  13.3 Волокнистые композиционные материалы
РЕКЛАМА НА САЙТЕ

КНИГИ ПО МЕТАЛЛУРГИИ